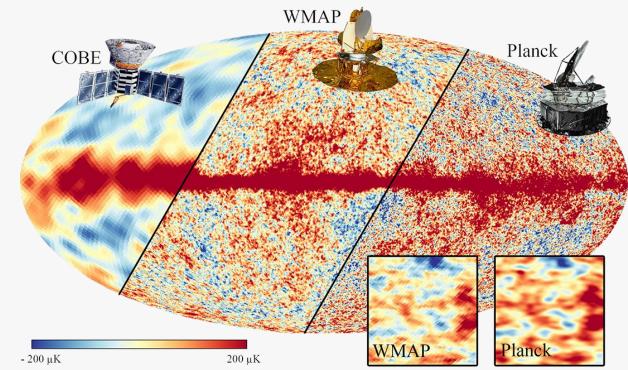
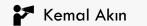
(INFLATIONARY) COSMOLOGY IN SCALAR—TENSOR THEORIES OF GRAVITATION

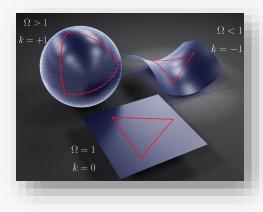




akinkem@itu.edu.tr

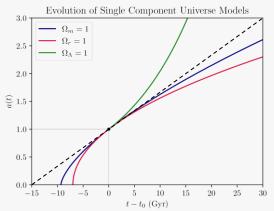
OUTLINE

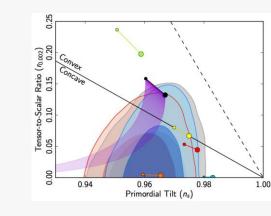
- A Brief Historical Introduction
- GR Elements of FRW Cosmology
- Dynamics of the Universe
- Some observations and coding
- Modifying Dynamics
- Inflationary Dynamics
- Inflationary Dynamics in a Modified Theory



 φ

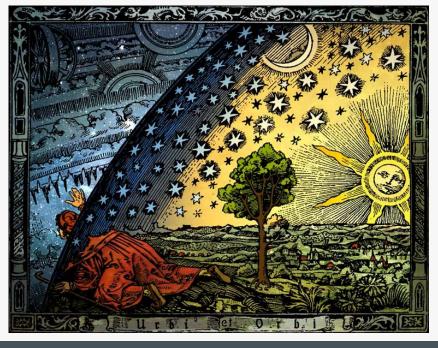
 $V(\varphi)$



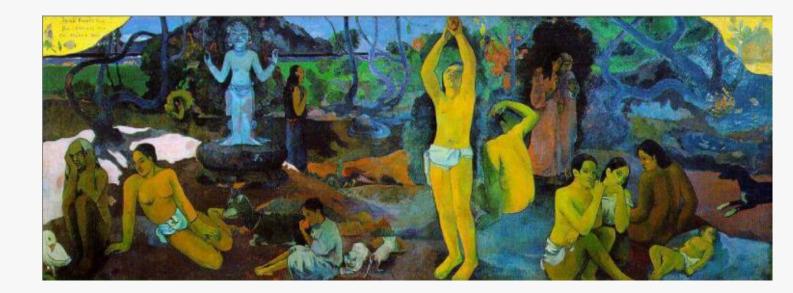


HISTORICAL INTRODUCTION

Where do we come from? What are we? Where are we going?



Colorized version of Flammarion engraving



Gauguin, 1897

HISTORICAL INTRODUCTION

Cosmology – study of the universe as a whole

→ Origin

 \longrightarrow Evolution

 \longrightarrow The ultimate "fate"

 $\underline{18^{\mathrm{th}}\,\mathrm{Century}}$

- Catalogs of nebulas & first spectral analyses with no physical understanding

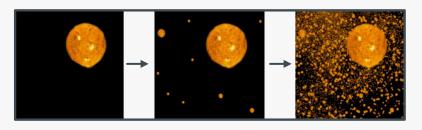
<u>19th Century</u> – Olbers' Paradox: Why the night sky is dark?

$20^{\rm th}$ Century

– General Relativity (1915): Principle of General Covariance

Mass-energy tells spacetime how to curve, and curved ST tells mass-energy how to move

- Friedmann & Lemaitre (1920s): GR based expanding universe models, e.g. "Cosmic Egg"
- "Great Debate" b
tw Shapley & Curtis (1920s): Whether Milk Way is whole universe OR not?



HISTORICAL INTRODUCTION

<u>20th Century</u> – E. Hubble (1924): Andromeda (M31)

- E. Hubble (1929): Further galaxies receding faster Expanding universe!
- Robertson Walker (1930s): Metric of the curved spacetime
- Zwicky & Smith (1940s): Early mention of "Dark Matter"
- Gamow & Hermann (1948): Thermal radiation after "hot Big Bang"
- Penzias & Wilson (1964): Discovery of Cosmic Microwave Background

Einstein & Hubble, @Mount Wilson Observatory, California (1931)

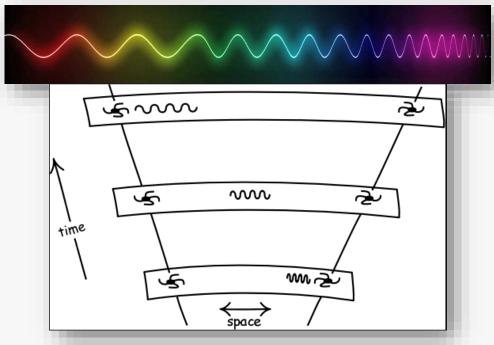
- Guth Linde (1980-81): Inflation accelerated expansion in the early stage of the universe
- Supernova Cosmology Project & High-Z Supernova Search Team(1998): Accelerated expansion of the universe

ASTRONOMICAL UNITS

Unit	In Metric Units	Galactic Scale	
Distance	$1 \ {\rm Mpc} = 10^6 \ {\rm pc} = 3.1 \times 10^{22} \ {\rm m}$	$R_{gal} = 50 kpc$	
Mass	$1 \mathrm{M}_{\odot} = 2 \times 10^{30} \mathrm{~kg}$	$M_{\rm gal}=10^{12} M_{\odot}$	
Luminosity	$1L_{\odot} = 3.8 \times 10^{26}$ watts	$L_{\rm gal}=3.6\times 10^{10}L_{\odot}$	
Time	$1 \text{ Gyr} = 10^9 \text{ year}$		

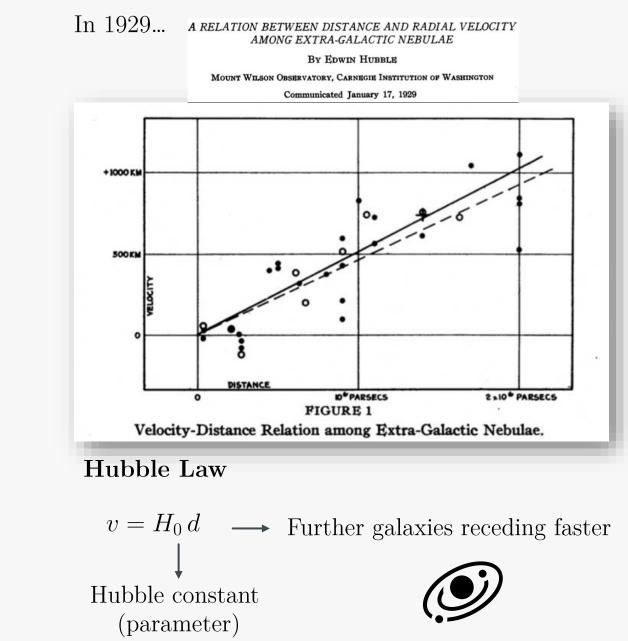
HUBBLE LAW AND EXPANDING UNIVERSE

Wavelength of photons gets "stretched" as the universe expands

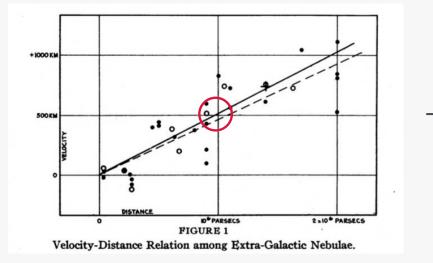


Redshift of the distant galaxies defined by

$$z\equiv rac{\lambda_{
m ob}-\lambda_{
m em}}{\lambda_{
m em}}$$

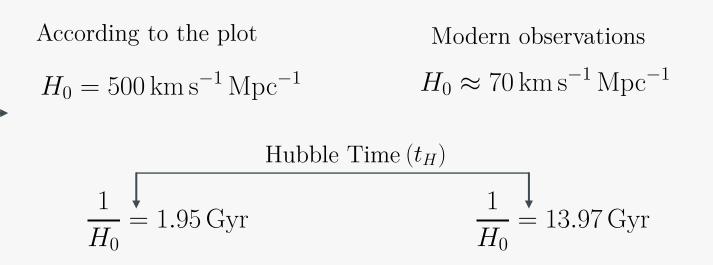


EXPANSION OF THE UNIVERSE



$$v = H_0 d$$

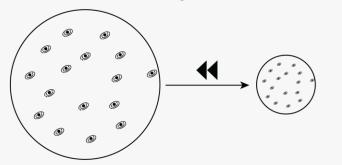
$$[H] = \left[\frac{1}{T}\right] \to \mathrm{km}\,\mathrm{s}^{-1}\,\mathrm{Mpc}^{-1}$$



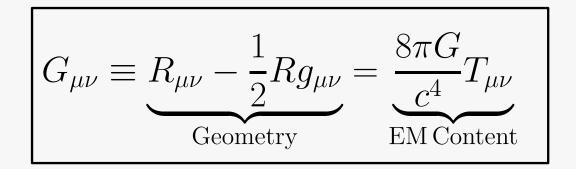
If the expansion had been linear, i.e. constant Hubble Parameter

Run back the film to "Hubble time" ago..

Galaxies were crammed together into a small volume



Framework: General Relativity



$g_{\mu\nu}$: Metric

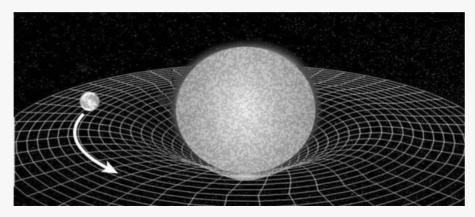
 $R^{\lambda}_{\ \mu\nu\kappa}$: Riemann Tensor

 $R_{\mu\nu}$: Ricci tensor

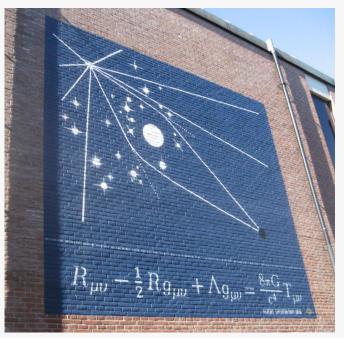
R: Ricci scalar

 $\Gamma^{\lambda}_{\mu\nu}$: Christoffel Symbol

 $T_{\mu\nu}$: Energy – Momentum Tensor



Gravity is the manifestation of curvature!



Leiden, Netherlands

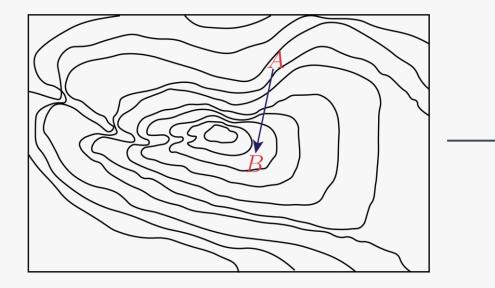
METRIC

Metric describes the structure of spacetime and provides a local measure of invariant distance

 $x^{\mu} \to (t,x,y,z)$

$$ds^{2} = dx^{2} + dy^{2}$$
$$ds^{2} = dr^{2} + r^{2}d\theta^{2}$$
$$ds^{2} = \sum_{i,j=1,2} (g_{ij}) dx^{i} dx^{j}$$

$$x^{1} = x, \ x^{2} = y, \ g_{ij} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$x^{1} = r, \ x^{2} = \theta, \ g_{ij} = \begin{bmatrix} 1 & 0 \\ 0 & r^{2} \end{bmatrix}$$



The actual physical distance depends on "topography"

METRIC

In classical Newtonian Mechanics, gravity is an external force, and particles move in a gravitational field.

In GR, gravity is encoded within the **metric** and the particles move in the curved space.

Using *Einstein summation convention* the line element can be written as

$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu} \longrightarrow \mu, \nu = 0, 1, 2, 3$$

FRW Metric

$$ds^{2} = -dt^{2} + a^{2}(t) \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2} \right) \longrightarrow g_{\mu\nu} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & \frac{a^{2}}{1 - kr^{2}} & 0 & 0 \\ 0 & 0 & a^{2}r^{2} & 0 \\ 0 & 0 & 0 & a^{2}r^{2}\sin^{2}\theta \end{bmatrix}$$

Scale Factor: shows how universe expands/contradicts with time

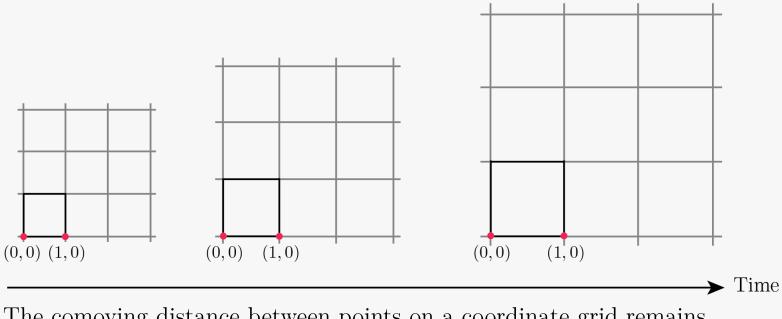
<u>Curvature Constant (k)</u>: can take the values -1, 0, +1 corresponding to the geometry of space

METRIC

FRW Metric

$$ds^{2} = -dt^{2} + a^{2}(t) \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2} \right)$$

Scale Factor: shows how universe expands/contradicts with time



The comoving distance between points on a coordinate grid remains constant as the universe expands.

The physical distance is proportional to the comoving distance times the scale factor a(t)

GR ELEMENTS OF FRW COSMOLOGY - I

$$\Gamma^{\lambda}{}_{\mu\nu} \equiv \frac{1}{2}g^{\lambda\sigma}(\partial_{\nu}g_{\sigma\mu} + \partial_{\mu}g_{\sigma\nu} - \partial_{\sigma}g_{\mu\nu})$$

$$R^{\lambda}{}_{\mu\nu\kappa} \equiv \partial_{\nu}\Gamma^{\lambda}{}_{\mu\kappa} - \partial_{\kappa}\Gamma^{\lambda}{}_{\mu\nu} - \Gamma^{\eta}{}_{\mu\nu}\Gamma^{\lambda}{}_{\kappa\eta} + \Gamma^{\eta}{}_{\mu\kappa}\Gamma^{\lambda}{}_{\nu\eta}$$

$$R_{\mu\nu} \equiv R^{\lambda}{}_{\mu\lambda\nu}$$

$$R \equiv g^{\mu\nu} R_{\mu\nu}$$

GR ELEMENTS OF FRW COSMOLOGY - II

$$R_{00} = R^{\lambda}_{0\lambda0} = -3\frac{\ddot{a}}{ac^{2}}$$

$$R_{11} = R^{\lambda}_{1\lambda1} = \frac{a\ddot{a} + 2\dot{a}^{2} + 2kc^{2}}{c^{2}(1 - kr^{2})}$$

$$R_{22} = R^{\lambda}_{2\lambda2} = \frac{r^{2}}{c^{2}}(a\ddot{a} + 2\dot{a}^{2} + 2kc^{2})$$

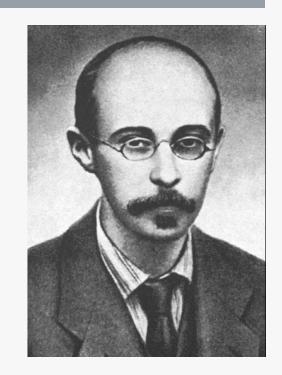
$$R_{33} = R^{\lambda}_{3\lambda3} = \frac{r^{2}\sin^{2}\theta}{c^{2}}(a\ddot{a} + 2\dot{a}^{2} + 2kc^{2})$$

$$R = g^{\mu\nu}R_{\mu\nu} = 6\left[\frac{\ddot{a}}{ac^2} + \left(\frac{\dot{a}}{ac}\right)^2 + \frac{k}{a^2}\right]$$

Dynamics of the universe is governed by following set of equations

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3c^2}\rho - \frac{kc^2}{a^2(t)}$$
Friedmann Equations
$$\frac{2\ddot{a}}{a} + \left(\frac{\dot{a}}{a}\right)^2 = -\frac{8\pi G}{c^2}p - \frac{kc^2}{a^2(t)}$$

 $p = \omega \rho$ \longrightarrow Equation of State (EoS)



$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3c^2}\rho - \frac{kc^2}{a^2(t)}$$

 $1^{\rm st}$ Friedmann Equation

Defining LHS as Hubble Parameter

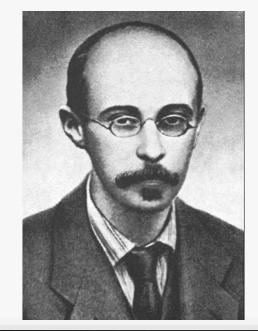
$$H \equiv \frac{\dot{a}}{a} \implies H^{2}(t) = \frac{8\pi G}{3c^{2}}\rho(t) - \frac{kc^{2}}{a^{2}(t)}$$

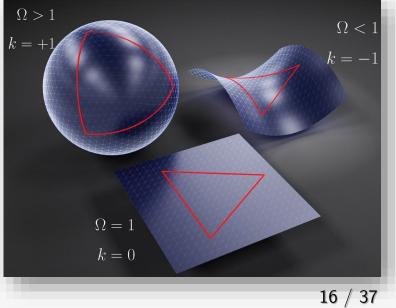
$$\int \text{Spatially flat}, k = 0$$

$$H^{2} = \frac{8\pi G}{3c^{2}}\rho \quad \text{``Critical Density''}$$

For a given Hubble parameter, we can define "critical density" as

$$H^2 = \frac{8\pi G}{3c^2}\rho_c \implies \rho_c = \frac{3c^2}{8\pi G}H^2$$





 $\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3c^2}\rho - \frac{kc^2}{a^2(t)}$ 1st Friedmann Equation

$$H^{2} = \frac{8\pi G}{3c^{2}}\rho_{c} \implies \rho_{c} = \frac{3c^{2}}{8\pi G}H^{2} - -$$
 "Critical Density"

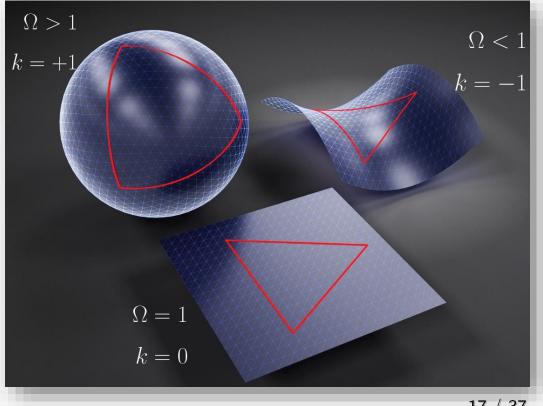
Define dimensionless "density parameter"

$$\Omega = \frac{\rho}{\rho_c} \implies \boxed{1 - \Omega(t) = -\frac{kc^2}{a^2(t)H^2(t)}}$$

Directly indicates the geometry

$$\begin{cases} \Omega > 1 \to k = +1 \\ \Omega = 1 \to k = 0 \\ \Omega < 1 \to k = -1 \end{cases}$$

According to current observations, geometry of the universe is close to be flat



EVOLUTION OF THE UNIVERSE

Using fluid equation, let us determine the evolution of energy densities

$$\dot{\rho} = -3\frac{\dot{a}}{a}(\rho + \omega\rho)$$
$$\int \frac{\dot{\rho}}{\rho} = -3(\omega + 1)\int \frac{\dot{a}}{a}$$

$$\rho = \rho_0 \, a^{-3(\omega+1)}$$

$$\frac{\ddot{a}(t)}{a(t)} = -\frac{4\pi G}{3c^2}(\rho + 3p)$$
$$\ddot{a} > 0$$
$$\boxed{\omega < -\frac{1}{3}}$$

Matter	Radiation	Dark Energy
0	1 /9	1
$\omega_{\rm m} = 0$	$\omega_{ m r} = 1/3$	$\omega_{\Lambda} = -1$
$a \propto t^{2/3}$	$a \propto t^{1/2}$	$a \propto e^t$
$\rho_{\rm m} = \rho_{\rm m,0} a^{-3}$	$\rho_{\rm r} = \rho_{\rm r,0} a^{-4}$	$ \rho_{\Lambda} = \rho_{\Lambda,0} $

 $\left(\frac{\dot{a}}{a}\right)^2 = \frac{\xi}{1}$ $\frac{8\pi G\rho_0}{3c^2}a^{-3(1+\omega)}$ Educated guess: $a \propto t^{\gamma}$ $a \propto t^{2/3(1+\omega)}$ Evolution of Single Component Universe Models 3.0 $\Omega_m = 1$ $\Omega_r = 1$ $\Omega_\Lambda = 1$ Accelerated 2.52.0Decelerated $(t) a^{(t)}$ 1.0 $0.5 \cdot$ 0.0 2515-10-5102030 -150 5 $t - t_0$ (Gyr)

EVOLUTION OF UNIVERSE AND THE CONTENT

In terms of dimensionless density parameter, Friedmann Equation can be written as

$$\frac{H^{2}(t)}{H_{0}^{2}} = \frac{\Omega_{\mathrm{r},0}}{a^{4}} + \frac{\Omega_{\mathrm{m},0}}{a^{3}} + \Omega_{\Lambda,0} + \frac{1 - \Omega_{0}}{a^{2}}$$

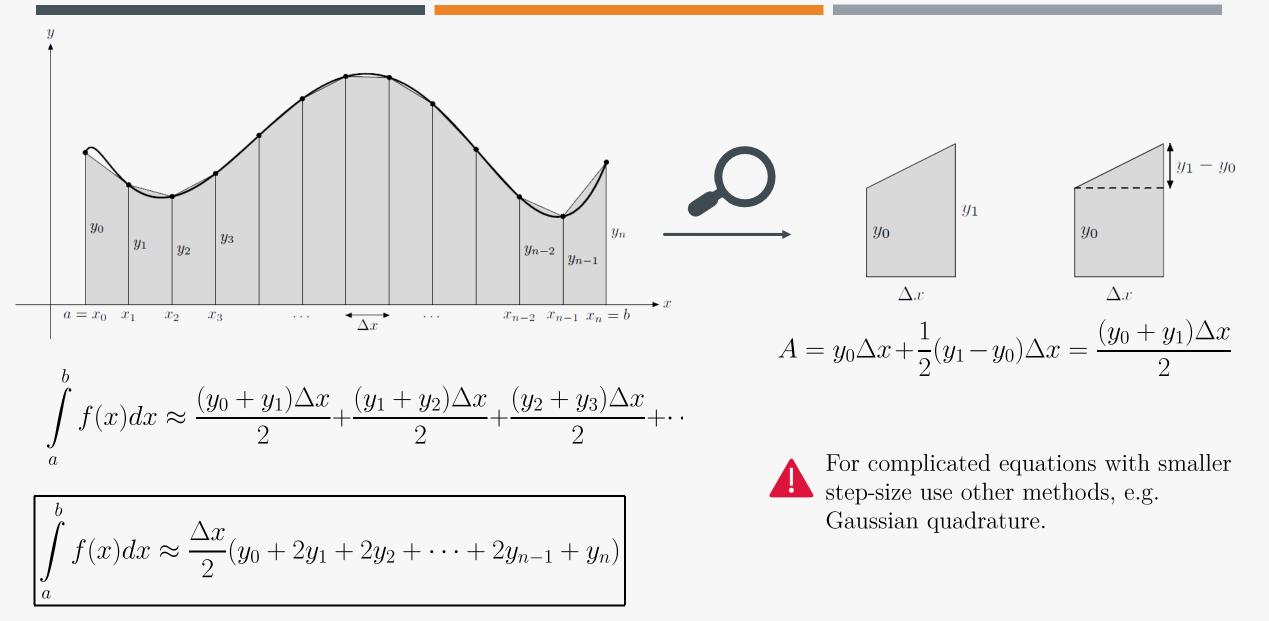
$$\frac{da}{dt} = H_{0} \left(\frac{\Omega_{\mathrm{r},0}}{a^{2}} + \frac{\Omega_{\mathrm{m},0}}{a} + a^{2} \Omega_{\Lambda,0} + 1 - \Omega_{0} \right)^{\frac{1}{2}}$$

$$H_{0}(t_{0}-t) = \int_{0}^{a} \frac{da'}{\left(\Omega_{\mathrm{r},0}/a'^{2} + \Omega_{\mathrm{m},0}/a' + a'^{2} \Omega_{\Lambda,0} + 1 - \Omega_{0}\right)^{\frac{1}{2}}$$

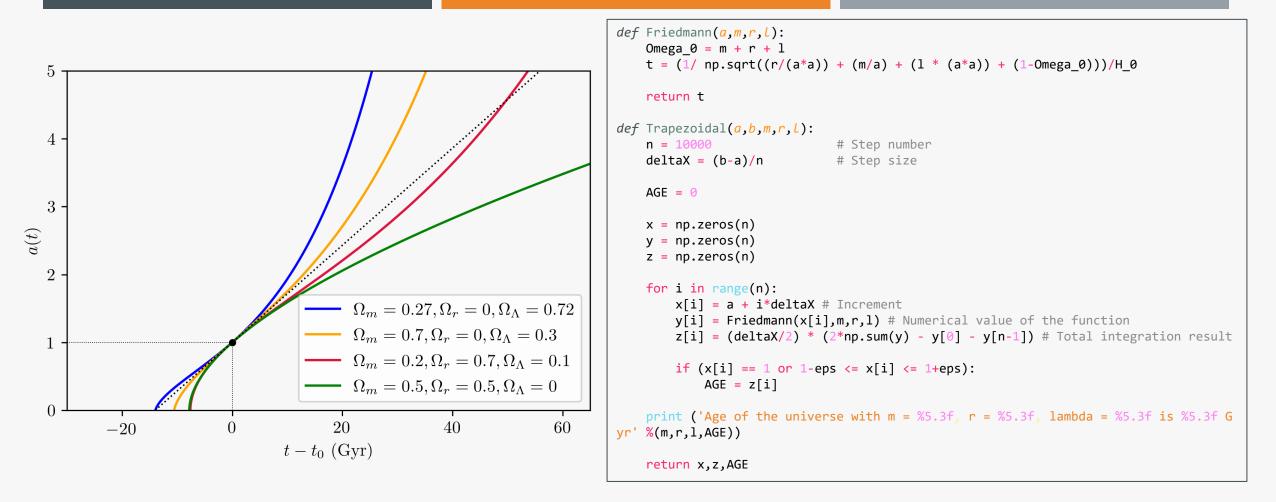
Can be integrated (analytically) under some conditions, however in general requires numerical integration.

The ingredients of such a universe models do **not** interact with each other

NUMERICAL QUADRATURE - TRAPEZOID



EVOLUTION OF UNIVERSE AND THE CONTENT



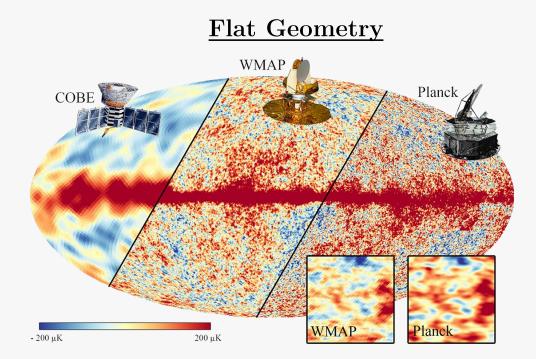
TWO COMPLIMENTARY OBSERVATIONS

So, how do we know the accelerated expansion?

How do we constrain the density parameters discussed in previous section?

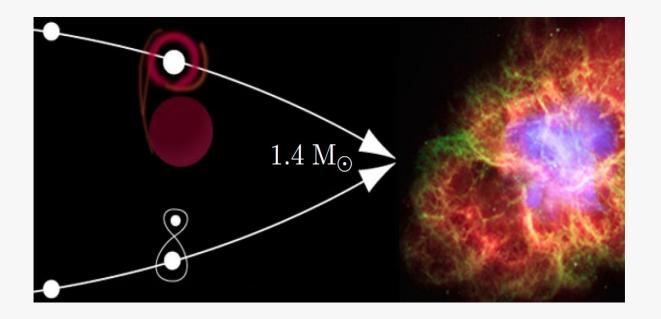
Accelerated Expansion

Type Ia Supernovae Observations



CMB Anisotropies

TWO COMPLIMENTARY OBSERVATIONS



$$F = \frac{L}{4\pi d_L^2}$$

$d_L =$	1 + z	\int^{z}	dz'
	H_0	\int_{0}	$\sqrt{\sum_{i} \Omega_{i,0} (1+z')^{3(1+\omega_i)}}$

$$\frac{\delta T}{T}(\theta,\phi) \equiv \frac{T(\theta,\phi) - \langle T \rangle}{\langle T \rangle}$$

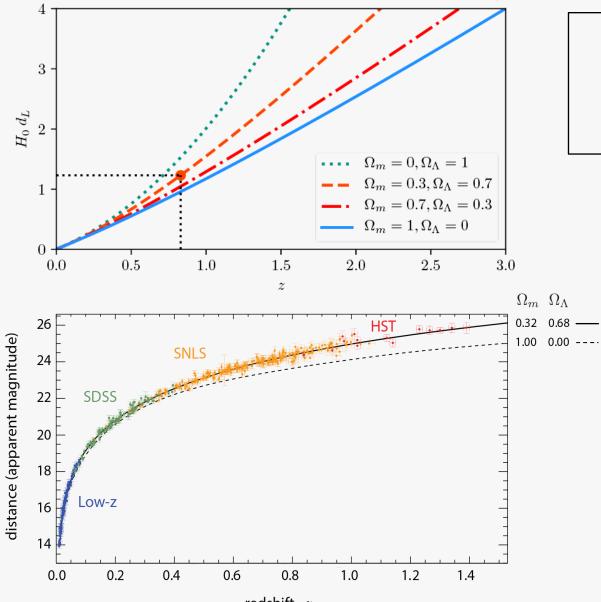
 $C(\theta) = \left\langle \frac{\delta T}{T}(\hat{n}) \frac{\delta T}{T}(\hat{n}') \right\rangle$

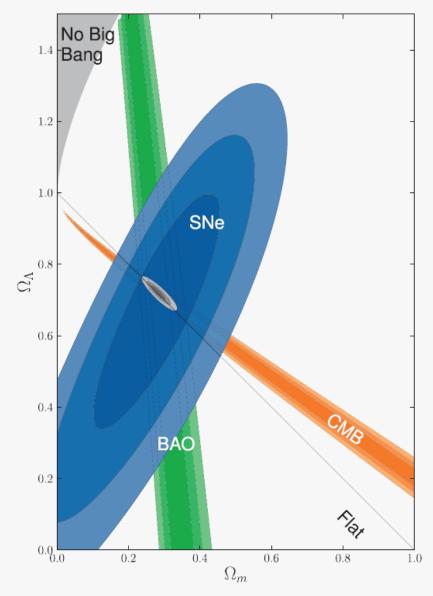
TWO COMPLIMENTARY OBSERVATIONS

Best Fit

 $\Omega_m \approx 0.3$

 $\Omega_{\Lambda} \approx 0.7$





redshift z

24 / 37

Cosmological constant is interpreted as the "vacuum energy".

<u>"The" Cosmological Constant Problem</u>: There is a huge difference btw observed and expected energy density (about 10^{120} orders of magnitude)

<u>Cosmic Coincidence ("why now")</u> Problem: Why ρ_{Λ} has the same order of magnitude with the present energy density of "matter".

Why does cosmic acceleration happen to begin now, not in the past or future?

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$$

<u>Possible Modifications</u> a) RHS: Energy – Matter Content

b) LHS: Gravity Theory

MODIFYING THEORY – LAGRANGIAN FORMALISM

GR Action

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa} R + \mathcal{L}_M \right] \xrightarrow{\delta S = 0} R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} \qquad T_{\mu\nu} \equiv \frac{-2}{\sqrt{-g}} \frac{\delta(\sqrt{-g}\mathcal{L}_m)}{\delta g^{\mu\nu}} = -2 \frac{\delta \mathcal{L}_m}{\delta g^{\mu\nu}} + g_{\mu\nu} \mathcal{L}_m$$

$$S = \int d^4x \sqrt{|g|} \left\{ R - \frac{1}{2} g^{\mu\nu} \left(\partial_\mu \varphi \right) \left(\partial_\nu \varphi \right) - V(\varphi) \right\} \begin{bmatrix} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

$$S = \int d^4x \sqrt{|g|} \left\{ F(\varphi)R - \frac{1}{2}g^{\mu\nu} \left(\partial_{\mu}\varphi\right) \left(\partial_{\nu}\varphi\right) - V(\varphi) \right\} \quad \text{where } F(\varphi) = \frac{1}{2} \left(\underbrace{\frac{1}{\kappa^2}}_{\text{NMC scalar field}} \right)$$

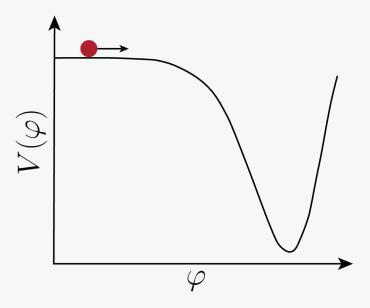
$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \frac{1}{2F(\varphi)} \left\{ -g_{\mu\nu} \left(\frac{1}{2} (\partial \varphi)^2 + V(\varphi) \right) + 2\nabla_{\mu} \nabla_{\nu} F(\varphi) - 2g_{\mu\nu} \Box F(\varphi) + \partial_{\mu} \varphi \partial_{\nu} \varphi \right\}$$

MINIMALLY COUPLED INFLATON

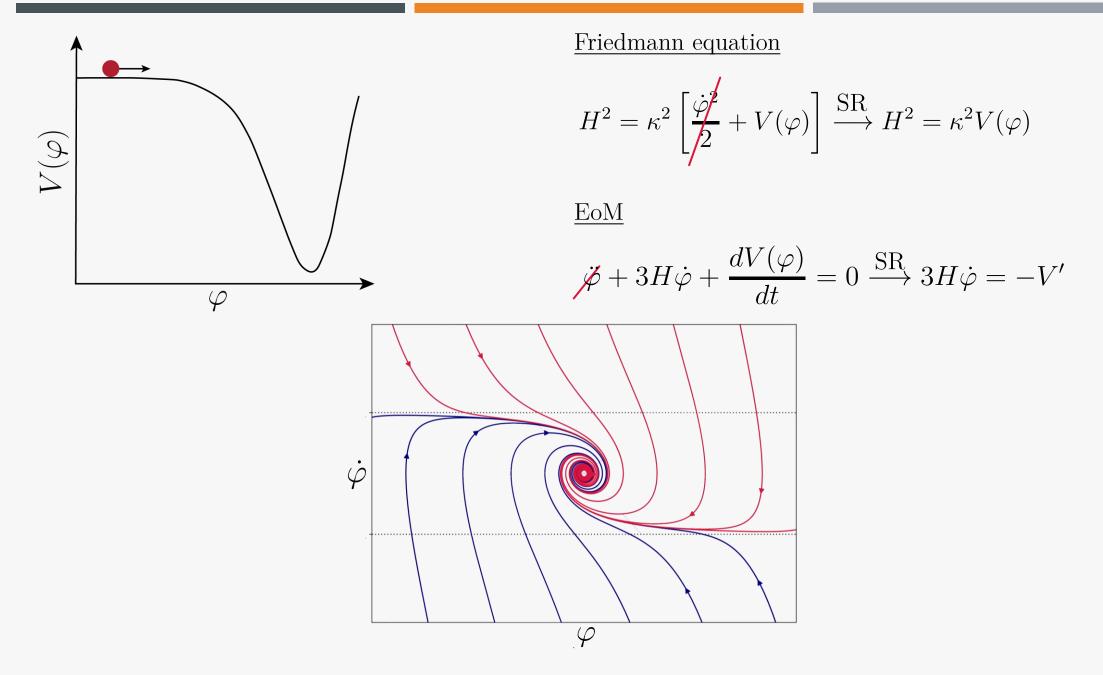
Can such a field result in accelerated expansion (or *inflation*)?

Answer: Under so-called slow roll conditions, yes!

$$\rho = \frac{1}{2}\dot{\varphi}^2 + V(\varphi), \ p = \frac{1}{2}\dot{\varphi}^2 - V(\varphi)$$
$$\omega_{\varphi} = \frac{p}{\rho} = \frac{\dot{\varphi}^2 - 2V(\varphi)}{\dot{\varphi}^2 + 2V(\varphi)} \xrightarrow{V(\varphi) \gg \dot{\varphi}^2} \omega_{\varphi} \simeq -1$$



SLOW-ROLL EQUATIONS



RELATING DYNAMICS WITH PARAMETERS

Hubble SR Parameters	Potential SR Parameters
$\epsilon_H \equiv -\frac{\dot{H}}{H^2}$	$\epsilon_V = \frac{1}{2\kappa^2} \left(\frac{V'}{V}\right)^2$
$\eta_H \equiv \frac{\ddot{H}}{H \dot{H}}$	$\eta_V = \frac{1}{\kappa^2} \frac{V''}{V}$

As long as universe expands exponentially, these parameters <<1

End of inflation:
$$\epsilon = 1$$

Number of e-folding: $N \equiv \ln \frac{a_f}{a_i} = \int_{t_*}^{t_e} H dt$

RELATING DYNAMICS WITH PARAMETERS - II

Potential SR Parameters

$$\epsilon_V = \frac{1}{2\kappa^2} \left(\frac{V'}{V}\right)^2$$
$$\eta_V = \frac{1}{\kappa^2} \frac{V''}{V}$$

End of inflation: $\epsilon = 1$

Number of e-folding:
$$N \equiv \ln \frac{a_f}{a_i} = \int_{t_*}^{t_e} H dt$$

$$H^2 \simeq \kappa^2 V(\varphi)$$
$$3H\dot{\varphi} = -V'$$

Let us express e-folding in terms of field itself and SR parameters..

$$N = \int H dt = \int H \frac{dt}{d\varphi} d\varphi = \int_{\varphi_*}^{\varphi_e} \frac{H}{\dot{\varphi}} d\varphi \xrightarrow{3H\dot{\varphi} = -V'} N = \int_{\varphi_*}^{\varphi_e} \frac{3H^2}{V'} d\varphi = -\kappa^2 \int_{\varphi_*}^{\varphi_e} \frac{V}{V'} d\varphi$$

$$N = -\kappa \int_{\varphi_*}^{\varphi_e} \frac{d\varphi}{\sqrt{2\epsilon_\varphi}}$$

TOY MODEL: MONOMIAL POTENTIAL

$$V(\varphi) \propto \varphi^n$$
 $V' = n\varphi^{n-1}$ $V'' = n(n-1)\varphi^{n-2}$

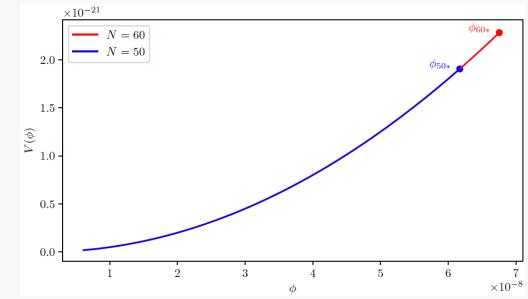
$$\epsilon = \frac{1}{2\kappa^2} \left(\frac{n\varphi^{n-1}}{\varphi^n} \right)^2 = \frac{1}{2\kappa^2} \frac{n^2}{\varphi^2} \quad \stackrel{\epsilon = 1}{\longrightarrow} \quad \varphi_e^2 = \frac{n^2}{2\kappa^2}$$

$$N = -\kappa^2 \int_{\phi_*}^{\phi_e} \frac{V}{V'} d\varphi \quad \epsilon_V = \frac{1}{2\kappa^2} \left(\frac{V'}{V}\right)^2$$
$$\eta_V = \frac{1}{\kappa^2} \frac{V''}{V}$$

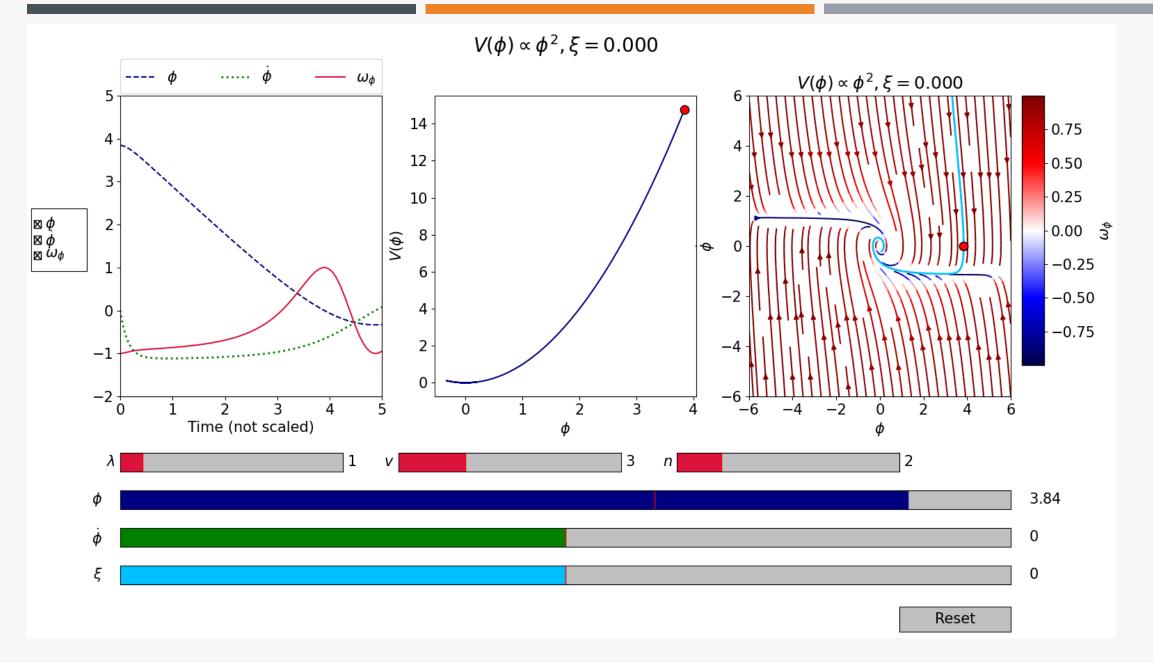
$$\eta = \frac{1}{\kappa^2} \frac{V''}{V} = \frac{1}{\kappa^2} \frac{n(n-1)}{\varphi^2}$$

$$N = -\kappa^2 \int_{\varphi_*}^{\varphi_e} \frac{\varphi}{n} d\varphi = -\frac{\kappa^2}{2n} \left(\varphi_e^2 - \varphi_*^2\right) \longrightarrow \qquad \varphi_*^2 = \frac{n(4N+n)}{2\kappa^2}$$

$$\epsilon(\varphi_*) = \frac{n}{n+4N} \quad \eta(\varphi_*) = \frac{2(n-1)}{n+4N}$$



SOME INTERACTIVITY..

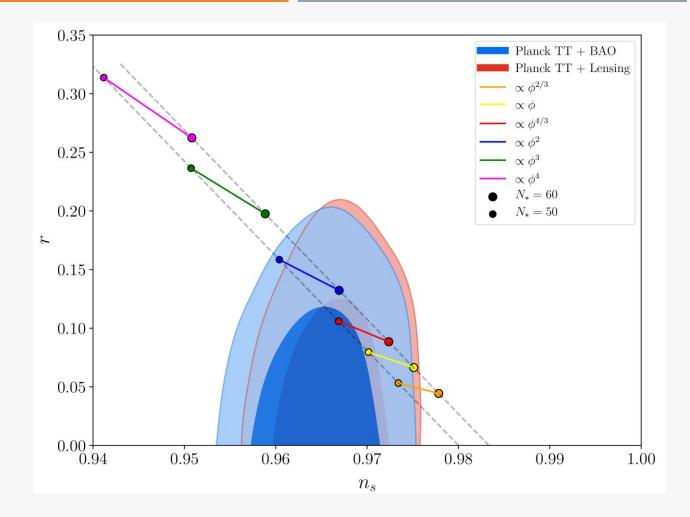


PREDICTIONS OF TODAY'S TOY MODEL

 $\epsilon(\varphi_*) = \frac{n}{n+4N} \quad \eta(\varphi_*) = \frac{2(n-1)}{n+4N}$

$$r = 16\epsilon(\varphi_*)$$
$$n_s = 1 - 6\epsilon(\varphi_*) + 2\eta(\varphi_*)$$

 $V(\varphi) \propto \varphi^n$



$$S = \int d^4x \sqrt{|g|} \left\{ F(\varphi)R - \frac{1}{2}g^{\mu\nu} \left(\partial_{\mu}\varphi\right) \left(\partial_{\nu}\varphi\right) - V(\varphi) \right\} \quad \text{where } F(\varphi) = \frac{1}{2} \left(\underbrace{\frac{1}{\kappa^2}}_{\text{NMC scalar field}} \right)$$

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \frac{1}{2F(\varphi)} \left\{ -g_{\mu\nu} \left(\frac{1}{2} (\partial \varphi)^2 + V(\varphi) \right) + 2\nabla_\mu \nabla_\nu F(\varphi) - 2g_{\mu\nu} \Box F(\varphi) + \partial_\mu \varphi \partial_\nu \varphi \right\}$$

$$\Box \varphi + 6F'R - \frac{dV(\varphi)}{d\varphi} = 0$$

In FRW

$$\Box F\varphi = \frac{1}{\sqrt{|g|}} \partial_{\mu} \left\{ \sqrt{|g|} g^{\mu\nu} \partial_{\nu} F(\varphi) \right\}$$
$$\Box F(\varphi) = -3H\dot{F} - \ddot{F} = -3H\dot{\varphi}F' - \ddot{\varphi}F' - \dot{\varphi}^2 F''$$

$$S = \int d^4x \sqrt{|g|} \left\{ F(\varphi)R - \frac{1}{2}g^{\mu\nu} \left(\partial_{\mu}\varphi\right) \left(\partial_{\nu}\varphi\right) - V(\varphi) \right\} \quad \text{where } F(\varphi) = \frac{1}{2} \left(\underbrace{\frac{1}{\kappa^2}}_{\text{NMC scalar field}} \right)$$

$$\begin{aligned} 6F(\phi)H^2 &= \frac{1}{2}\dot{\phi}^2 + V(\phi) - 6H\dot{F}(\phi) \\ 4F(\phi)\dot{H} &= -\dot{\phi}^2 - \ddot{F}(\phi) + 2H\dot{F}(\phi) \\ \ddot{\phi} + 3H\dot{\phi} - 6\big(2H^2 + \dot{H}\big)F'(\phi) + V'(\phi) = 0 \end{aligned}$$

SLOW-ROLL EQUATIONS: JF

$$\epsilon_H \equiv -\frac{\dot{H}}{H^2}, \quad \eta_H \equiv \frac{\dot{\epsilon}_H}{H\epsilon_H}; \quad \epsilon_F \equiv \frac{\dot{F}}{HF}, \quad \eta_F \equiv \frac{\dot{\epsilon}_F}{H\epsilon_F}$$
$$H^2 \simeq \frac{V}{3F}$$

 $3H\dot{\phi}\simeq 6H^2F'+3\dot{H}F'-V'$

$$\dot{H} = \frac{\dot{\phi}}{6HF^2} (V'F - VF') = \frac{\dot{\phi}}{6H} \left(\frac{V}{F}\right)'$$

$$N = \int H dt = \int_{\phi_i}^{\phi_e} \frac{H}{\dot{\phi}} d\phi = \int_{\phi_i}^{\phi_e} \frac{3VF'^2 + 2F}{F(4V'F' - V'F)} d\phi .$$

